A Rule Synthesis Algorithm for Programmable Stochastic Self-Assembly of Robotic Modules
نویسندگان
چکیده
Programmable self-assembly of modular robots offers promising means for structure formation at different scales. Rule-based approaches have been previously employed for distributed control of stochastic self-assembly processes. The assembly rate in the process directly depends on the concurrency level induced by the employed ruleset, i.e. the number of concurrent steps necessary to build one instance of the target structure. Our aim here is to design a formal synthesis algorithm to automatically derive rulesets of high concurrency for a given target structure composed of robotic modules. In the literature, self-assembly of (simulated or real) robotic modules has been realized through manually designed rulesets or manually adjusted rulesets generated by employing graph-grammar formalisms or metaheuristic methods. In this work, we employ an extended graph-grammar formalism, adapted for self-assembly of robotic modules, and propose a novel formal synthesis algorithm capable of generating rulesets for robotic modules by natively considering the morphology of their connectors. The synthesized rulesets induce a high level of concurrency in the self-assembly scheme by exploiting controlled information propagation, using solely local communication. Simulation results of microscopic (non-spatial) and submicroscopic (spatial) models of our robotic platform confirm higher performance of rulesets synthesized by our algorithm compared to related work in the literature.
منابع مشابه
Synthesizing Rulesets for Programmable Robotic Self-assembly: A Case Study Using Floating Miniaturized Robots
Programmable stochastic self-assembly of modular robots provides promising means to formation of structures at different scales. Formalisms based on graph grammars and rule-based approaches have been previously published for controlling the self-assembly process. While several rule-synthesis algorithms have been proposed, formal synthesis of rulesets has only been shown for self-assembly of abs...
متن کاملSelf-Disassembling Robots Pebbles: New Results and Ideas for Self-Assembly of 3D Structures
We present our newest algorithms, results, and future plans for the robotic pebble system show in Figure 1 which is capable of forming shapes through uniform selfassembly followed by selective self-disassembly. In general, programmable matter systems are composed of small, intelligent modules able to form a variety of macroscale objects in response to external commands or stimuli. Our system is...
متن کاملA two-stage stochastic rule-based model to determine pre-assembly buffer content
This study considers instant decision-making needs of the automobile manufactures for resequencing vehicles before final assembly (FA). We propose a rule-based two-stage stochastic model to determine the number of spare vehicles that should be kept in the pre-assembly buffer to restore the altered sequence due to paint defects and upstream department constraints. First stage of the model decide...
متن کاملSoft Cells for Programmable Self-Assembly of Robotic Modules
Programmable self-assembly of chained robotic systems holds potential for the automatic construction of complex robots from a minimal set of building blocks. However, current robotic platforms are limited to modules of uniform rigidity, which results in a limited range of obtainable morphologies and thus functionalities of the system. To address these challenges, we investigate in this paper th...
متن کاملFluid-Mediated Stochastic Self-Assembly at Centimetric and Sub-Millimetric Scales: Design, Modeling, and Control
Stochastic self-assembly provides promising means for building micro-/nano-structures with a variety of properties and functionalities. Numerous studies have been conducted on the control and modeling of the process in engineered self-assembling systems constituted of modules with varied capabilities ranging from completely reactive nano-/micro-particles to intelligent miniaturized robots. Depe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016